
P

G1

MQ1

Y
2

3

a4
b5

6

a7

8

A9

R10

R11

A12

A13

14

K15

M16

G17

H18

Z19

120

21

(22

y23

a24

t25

fi26

p27

e28

c29

30

h31

t32

s33

i34

i35

d36

m37

n38

a39

r40

f41

b42

L43

944

0
h

ARTICLE IN PRESSG Model
SL 8665 1–7

Plant Science xxx (2012) xxx–xxx

Contents lists available at SciVerse ScienceDirect

Plant  Science

j our na l ho me  p a ge: www.elsev ier .com/ locate /p lantsc i

enome-wide  association  study  (GWAS)  of  resistance  to  head  smut  in  maize

ing  Wanga, Jianbing  Yana,  Jiuran  Zhaob,  Wei  Songb,  Xiaobo  Zhanga,
annong  Xiaoa, Yonglian  Zhenga,∗

National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
Maize Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 5 April 2012
eceived in revised form 9 June 2012
ccepted 3 August 2012

a  b  s  t  r  a  c  t

Head  smut,  caused  by the  fungus  Sphacelotheca  reiliana  (Kühn)  Clint,  is a devastating  global  disease  in
maize,  leading  to  severe  quality  and  yield  loss  each  year.  The  present  study  is  the first  to  conduct  a
genome-wide  association  study  (GWAS)  of  head  smut  resistance  using  the  Illumina  MaizeSNP50  array.
Out of 45,868  single  nucleotide  polymorphisms  in a panel  of  144  inbred  lines,  18  novel candidate  genes
vailable online xxx

eywords:
aizeSNP50
enome-wide association study

were  associated  with  head  smut  resistance  in maize.  These  candidate  genes  were  classified  into  three
groups,  namely,  resistance  genes,  disease  response  genes,  and  other  genes  with  possible  plant  disease
resistance  functions.  The  data  suggested  a  complicated  molecular  mechanism  of  maize  resistance  against
S.  reiliana.  This  study  also  suggested  that  GWAS  is a  useful  approach  for identifying  causal  genetic  factors
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. Introduction

Maize head smut, caused by the fungus Sphacelotheca reiliana
Kühn) Clint, is a devastating disease that can lead to significant
ield losses in most maize-growing regions of the world [1].  An
nnual yield loss of 0.3 million tons, which account for 10–15% of
otal yield, occurs in northern China [2].  Current disease control for
eld crops depends on chemical applications and field management
ractices. However, this strategy is time consuming, costly, and an
nvironmental concern. Therefore, developing head smut-resistant
ultivars has long been a favored method for disease control [3].

Conventional breeding for maize resistance against S. reiliana
as met  with a variety of difficulties such as the scarcity of resis-
ant germplasm, making it an inefficient approach to trait-based
election [3].  Thus, maize breeders have made significant efforts
n identifying molecular markers associated with resistance to
mprove breeding efficiency and shorten the breeding cycle. To
ate, many types of molecular markers, such as amplified frag-
ent length polymorphisms, simple sequence repeats, and single

ucleotide polymorphisms (SNPs), have been used in genetic link-
ge maps construction and quantitative trait locus (QTL) location. In
ecent years, studies on maize resistance against S. reiliana mainly
ocused on resistant QTL location. Using a population of 100 recom-
Please cite this article in press as: M.  Wang, et al., Genome-wide asso
Sci. (2012), http://dx.doi.org/10.1016/j.plantsci.2012.08.004

inant inbred lines (derived from Hi34 and TZil7) with 120 markers,
u and Brewbaker [4] detected four QTLs on chromosomes 1, 3,
, and 10. In the same year, Lübberstedt et al. [5] reported the
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location of three and eight QTLs in different chromosomes by geno- 

typing a mapping population of 220 F3 families derived from the 

‘D32’ × ‘D145’ cross, in France and China, respectively. Genotyping 

a mapping population of 184 F2:3 families (derived from Mo17 and 

Huangzao4), Gao [6] the location of six and eight QTLs in different 

year. With the 191 F2:3 families produced from the cross of two Chi- 

nese elite inbreds (Mo17 and Huangzao4), Li et al. [7] detected five 

QTLs on chromosomes 1, 2, 3, 8, and 9 at one location, as well as five 

QTLs on chromosomes 1, 2, 3, 4, and 7 at another location. Based on 

the 68 BC2 recombinants from the cross of ‘Ji1037’ and ‘Huangzao4’, 

the major resistance QTL, qHSR1, has been fine-mapped in bin 2.09 

[8].  To the best of our knowledge, QTL or gene resistance to head 

smut has not been located by association analysis. 

Association analysis based on linkage disequilibrium (LD) com- 

plements linkage mapping. This method generally consists of five 

steps: germplasm choice, estimation of population structure, trait 

evaluation, population sample genotype, and testing the genotypes 

and phenotypes for their associations [9].  Association analysis has 

been receiving unprecedented attention because of its advantages, 

including high resolution, cost efficiency, and non-requirement 

of pedigrees or crosses [10]. Moreover, genome-wide association 

studies (GWAS) are useful and powerful for genetic variations that 

underlie many important and complicated phenotypes in plants 

such as rice, Arabidopsis, and maize. These traits include disease 

resistance of Arabidopsis thaliana [11] and maize [12,13], flowering 

time of maize [14] and rice [15], carotenoid content of maize [16]. 
ciation study (GWAS) of resistance to head smut in maize, Plant

Hence, GWAS can reduce breeding program costs and time. 71

The first high-density 50 K SNP Array in maize has been recently 72

developed, which offers a much higher resolution than previous 73

arrays [17]. We  initiated a genome-wide association study (GWAS) 74

d. All rights reserved.
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sing this SNP array to identify the chromosomal regions and spe-
ific SNPs that affect resistance levels in a commercial breeding
opulation. Our objectives include the following: (1) to assess the
xtent of LD in the target population; (2) to identify the gene(s)
r QTL(s) that significantly affect head smut resistance; and (3) to
haracterize those genes based on known function, and co-location
f known QTLs for head smut resistance.

. Materials and methods

.1. Germplasm, experiment design and statistical analyses

A set of 144 inbred lines was used for whole-genome associa-
ion mapping. The assembled lines included widely used parents
f commercial hybrids in China. Two inbred lines from the Interna-
ional Maize and Wheat Improvement Center were also included.
henotype was screened in two disease “hot spots”, Gongzhuling,
ilin Province and Harbin, Heilongjiang Province in China during
pril to September in 2009 and 2010. In each plot, individuals were
lanted in a randomized complete block design with two  repli-
ations, (three replications in Gongzhuling in 2010). The inbreds
ere grown in single 3 m rows 0.67 m apart, with a planting density

f 45,000 plants/ha. Artificial inoculation and resistance scoring to
ead smut in the field were performed as described by Chen et al.
8].  The teliospores of S. reiliana were collected from the field in
he previous growing season, stored in a cloth bag in a dry and
ell-ventilated environment, and then filtered prior to use. Seeds

f the inbred lines were sown and covered with a mixture of soil
nd teliospore, at a ratio of 1000:1 [8].  The percentages of infected
lants per plot were scored in either ears or tassels at the mature
lant stage with completely expressed disease symptoms.

The best linear unbiased predictors for each line were calcu-
ated with the PROC MIXED procedure of SAS software. Broad sense
eritability (H2) was calculated in SAS as

2 = ı2
G

[ı2
G + (ı2

GE/n)  + ı2
e /rn]

here ı2
G is the genotypic variance, ı2

GE is the geno-
ype × environment variance, ı2

e is the residual error variance,
nd n and r are the number of environments and replications,
espectively [18].

.2. Genotype and quality control

Young leaves from six random thirty-day seedlings per inbred
ine were bulked together and ground in liquid nitrogen. DNA was

anually isolated from the leaves using a modified CTAB method
19]. DNA was quantified and genotyped using an Illumina Bead-
tation 500GX machine, following the manufacturer’s instructions.
he SNP content, selected from public and private sources, was
haracterized for genic representation, optimized physical spac-
ng, diversity for 30 known diverse lines, and genetic distance. The

aizeSNP50 Genotyping BeadChip contains 56,110 markers spaced
t a median distance of 40 kb. The Illumina BeadStudio genotyping
oftware was used to assess gene clusters and call the data auto-
atically. Each SNP, called by the Illumina software, was  further

e-checked manually and rescored if any error was detected in the
lustering of homozygous and heterozygous groups [20]. This is
ue to the fact that the cluster separation from the BeadStudio soft-
Please cite this article in press as: M.  Wang, et al., Genome-wide asso
Sci. (2012), http://dx.doi.org/10.1016/j.plantsci.2012.08.004

are could be calculated on the degree of separation between two
omozygous clusters from the heterozygous cluster, rather than
hat between the two homozygous groups, which are common in
nbred lines with few heterozygotes. Thus, heterozygous SNPs were
onsidered as missing data.
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2.3. Population structure, relative kinship, and LD decay 

The STRUCTURE software, with a Bayesian Markov Chain Monte 

Carlo model (MCMC), was  used to estimate the population struc- 

ture. Three runs of STRUCTURE were performed for each number of 

populations (k) (set from 1 to 10). Burn-in time and MCMC replica- 

tion number were both set to 500,000 in each run. The true k value 

was determined by the log probability of the data (LnP(D)) and an ad 

hoc statistic delta k, based on the rate of change in LnP(D) between 

successive k values [21]. Principal component analysis (PCA) was 

also used to stratify the population structure. The PowerMarker 

software counted Nei’s genetic distances [22] among given sub- 

groups and created genetic distance matrices [23]. After double 

centering, distance matrices were used to obtain eigenvectors in 

NTSYS-pc Version 2.02 [24]. Using the SPAGeDi software, 9905 SNP 

loci with a minor allele frequency (MAF) ≥ 0.05 and a lower value
of missing data of <0.1 were assessed for relative kinship [25]. All
negative values from this software were set to zero. The parameter
r2 was  used to estimate LD from data where the missing data were 

less than 20%. When assessing LD, a serial spacing between two  loci
on the same chromosome of 0.1 kb, 0.2 kb, 0.5 kb, 1 kb, 2 kb, 5 kb, 

10 kb, 30 kb, 50 kb, 100 kb, 300 kb, 500 kb, 1 Mb,  3 Mb,  5 Mb,  40 Mb,  

50 Mb,  and 100 Mb  were considered. 

2.4. Model testing and genome wide association mapping 

Six models referring to the population structure (Q, PCA) and 

kinship (K) were selected to correct for false positives. The general
linear model (GLM) included the Q model, the PCA model, and a 

model that did not control for Q and PCA. The mixed linear model
(MLM)  comprised the K model, the Q + K model, and the PCA + K 

model. Both the GLM and MLM  models were performed in TASSEL 

V2.1 [26]. Quantile–quantile plots were shown with a negative log 

value of the expected P-value from the genotype–phenotype asso- 

ciation and the statistical P-value that deviated from the expected 

P-value and could give rise to false positive results. Both the quan- 

tile–quantile plots and Manhattan plots were drawn using the R 

package.
In this study, negative log (1/n) was  used as a threshold based on 

the following reasons. First, the sample size is small and the statisti- 

cal power is not enough. Second, the Bonferroni test (0.05/numbers 

of tests) criterion is typically very strict to be a threshold because 

GWAS is hypothesis generating [27]. The statistical threshold for 

GWAS was  decreased to obtain the true associations for plants 

[28–31].  

2.5. Association analysis of candidate genes 

To investigate the causal polymorphisms of candidate genes, 

direct polymerase chain reaction (PCR) amplification and gene
sequencing were employed, corresponding to the 5′- and 3′-end 

across a panel of 144 inbred lines. The sequencing primers are 

shown in Table S3.  Sequence alignment for polymorphism iden- 

tification was performed using the multiple sequence alignment 

program MUSCLE [32] and was refined manually using BioEdit [33]. 

Refined sequences were exported to Phylip [34] for further anal- 

ysis. SNPs and InDels were identified in TASSEL V2.1 [26] for all 

polymorphisms present at a frequency of ≥0.05.

3. Results

3.1. Trait variation and heritability 
ciation study (GWAS) of resistance to head smut in maize, Plant

The statistics of the phenotypic measurements of 144 maize 186

lines for the GWAS are shown in Table S1.  The observed value 187

of susceptibility to head smut was  within 0–83.83%, showing 188

dx.doi.org/10.1016/j.plantsci.2012.08.004
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Fig. 1. LD across 10 chromosomes in maize. The X-axis indicates the physical dis-
tance between SNPs within the same chromosome and the Y-axis indicates the
p
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in plant disease response were detected among these genes. We  242

also identified a gene encoding a leucine-rich repeat-containing 243

protein, which may  function in plant disease resistance pathways 244

in response to a variety of external stimuli from pathogens [35]. 245

Fig. 3. Manhattan plots of a mixed linear model (MLM)  for resistance to head smut.
Plots above the blue horizontal dashed line show the genome-wide significance with
a  moderately stringent threshold of −log (1/45,868). Plots above the red horizontal
dashed line show the genome-wide significance with stringent threshold of −log
(0.05/45,868). The different colors indicate plots for different chromosomes, which
arameter r2 of LD.

xtensive variation. The broad sense heritability was calculated as
pproximately 88.7%. The G × E interaction was highly significant
P < 0.001).

.2. SNP genotyping

Using the Illumina MaizeSNP50 BeadChip, genotypes were dis-
inguished among the panel of 144 accessions. Excluding data with

AF  <0.05 and missing data >20%, data from 45,868 SNPs were
onfirmed for further analysis. In addition, oligomer sequences
rom the 45,868 SNPs were blasted against the maize sequence
atabase AGPV1 (http://www.maizesequence.org). Out of 45,868
ligomer sequences, 43,102 (92%) had a single megablast hit and
ould therefore be assigned to both a chromosome and a distinct
osition.

.3. LD, population structure, relative kinship, and model testing

The distributions of r2 between the different physical distances
f each chromosome, as well as all the chromosomes, are presented
n Fig. 1. The r2 value sharply declined as the physical distance
ncreased. LD decay for each chromosome is also different. In addi-
ion, the mean r2 value varied among all chromosomes, ranging
rom ∼100 kb to ∼750 kb. The average r2 for all chromosomes was
stimated at ∼200 kb, when the value of the cut off for r2 was  set
o 0.1.

Population structure was assessed by running the STRUCTURE
oftware for K values ranging from 1 to 10 on the entire panel
sing 28,791 high-quality SNP markers among the 45,868 SNPs.
he different SNP sets for different analyses were due to reduc-
ng computing time. The value of LnP(D) increased continuously,

ith no obvious inflexion point. However, a significant increase was
bserved when delta k changed from 2 to 3 or 3 to 4 (Fig. S1). The
opulation was divided into three subgroups based on the known
edigree and breeding history. A neighbor-joining (NJ) tree was
lso drawn, based on Nei’s genetic distance (Fig. S2). The resulting
J tree showed three divergent subgroups, in accordance with the

esults from population stratification.
Both the GLM and the MLM  were used to perform the association

nalysis. Association results with the different models are shown as
uantile–quantile plots of estimated −log 10(p) (Fig. 2). The results
rom the MLM  (including K, PCA + K, and Q + K models) were better
ompared with those from the GLM model (including Q, PCA and no
Please cite this article in press as: M.  Wang, et al., Genome-wide asso
Sci. (2012), http://dx.doi.org/10.1016/j.plantsci.2012.08.004

 + PCA models). For resistance to head smut, the PCA + K and Q + K
odels performed much better than the K model with respect to

alse positive correction.
tion demonstrate that the statistical analysis may cause spurious associations. (For
interpretation of the references to color in this figure legend, the reader is referred
to  the web version of the article.)

3.4. Association mapping 

Nineteen association signals were identified with 

P < 2.18 × 10−5 from the MLM  in a genome wide scan. Among 

the 19 SNPs, eight were declared significant under the threshold 

of P < 1.09 × 10−6 (Fig. 3). The frequencies of SNP alleles for the 19 

loci are shown in Table S2.  The 19 SNPs explained 86.5% of the total 

phenotypic variation, ranging from 3.5% to 9.2%. Detailed informa- 

tion is summarized in Table 1. The 19 SNPs identified by association 

mapping were adjacent to or in 18 genes. Three significant SNPs 

were found within genes, and 16 from nearby genes. Several
encode serine/threonine protein kinases known to be involved 
ciation study (GWAS) of resistance to head smut in maize, Plant

follow the order: chromosome 1–chromosome 10. The plots with the −log10 (P)
value above 8 were not shown. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of the article.)

dx.doi.org/10.1016/j.plantsci.2012.08.004
http://www.maizesequence.org/
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Table 1
Physical positions of 19 SNPs significantly associated with head smut resistance and the predicted function or homology of adjacent candidate genes.

SNP Chr. Physical position
(AGPv1 bp)

bin r2 P Candidate genes Function Class Previous studies

1 1 278884507 1.09 0.046 3.84E−07a GRMZM2G300990 Serine/threonine protein
kinase

Plant defense response

2 2 56673949 2.04 0.043 5.54E−17a GRMZM2G434669 Antifreeze Plant defense response
3  2 201359446 2.08 0.051 6.71E−06 GRMZM2G140231 Serine/threonine protein

kinase
Plant defense response Gao (2005)

4  2 219834173 2.09 0.093 4.05E−06 GRMZM2G166566 Basic-leucine zipper
transcription factor

Plant defense response Gao (2005), Chen et al.
(2008), Li et al. (2008)

5 3 124139795 3.05 0.074 1.52E−08a GRMZM2G137289 MADS-box Plant defense response Lübberstedt et al. (1999), Li
et al. (2008)

6  4 220145226 4.08 0.036 6.31E−41a GRMZM2G046816 Tubby-like Plant defense response
7 5  187810205 5.05 0.043 6.87E−06 GRMZM2G139858 Antifreeze Plant defense response
8 5  188373740 5.05 0.035 5.97E−07a GRMZM2G312274 Auxin Plant defense response
9  6 163988192 6.06 0.047 2.25E−08a AC195860.3 FG002 Unknown Unknown

10  7 3672618 7.01 0.038 9.00E−06 GRMZM2G465226 Pathogenesis-related protein Disease resistance Liet al. (2008)
11 8 103237278 8.03 0.036 1.39E−06 GRMZM2G047152 NB-ARC Disease resistance Lübberstedt et al. (1999)
12  8 131978501 8.05 0.045 4.86E−06 GRMZM2G075000 Actin cross link Plant defense response
13  8 136910174 8.05 0.039 3.74E−06 GRMZM2G164341 Antifreeze protein Plant defense response
14  8 136948482 8.05 0.039 1.16E−10a GRMZM2G164341 Antifreeze protein Plant defense response
15 8 139906939 8.05 0.041 1.05E−05 GRMZM2G017603 NB-ARC disease resistance
16  9 84924940 9.03 0.037 4.58E−06 GRMZM2G443953 WD40 repeat Plant defense response Lübberstedt et al. (1999),

Lu and Brewbaker (1999)
17 9 85140137 9.03 0.035 2.45E−07a GRMZM2G383607 Unknown Unknown Lübberstedt et al. (1999),

Lu and Brewbaker (2000)
18  9 90505475 9.03 0.050 4.24E−06 GRMZM2G348666 aminoacyl-tRNA ligase activity Plant defense response Lübberstedt et al. (1999),

Lu and Brewbaker (2001)
19 10 137723733 10.05 0.037 1.01E−05 GRMZM2G117667 Lipase Disease resistance

r2, proportion of phenotypic variance explained by SNP.
a Significant SNP-trait associations with a stringent threshold of −log (0.05/45,868).

dx.doi.org/10.1016/j.plantsci.2012.08.004
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Fig. 4. Manhattan plots of mixed linear model (MLM)  for resistance to head smut in the region expanding SNP 4–400 kb from both ends. Eight genes were GRMZM2G015933,
GRMZM2G166566, GRMZM2G094955, GRMZM2G094978, GRMZM2G410975, GRMZM2G110894, GRMZM2G172101 and GRMZM2G052507, respectively. The diamonds
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 tubby-like gene associated with the plant defense response was
ocated in bin 4.08 [36]. Other genes involved in plant defense
esponses were identified, such as a MADS-box protein in bin 3.05,
uxin in bin 5.05, and a WD40 repeat-containing protein in bin
.03. In particular, two  genes encoding proteins with a nucleotide-
inding site (NBS) commonly found among resistance (R) genes
ere identified on chromosome 8 [37]. Several other candidate

enes identified by GWAS were related to stress response, such as
everal antifreeze genes responsive to cold damage.

Several studies indicate that a QTL located in bin 2.09 is respon-
ible for head smut resistance [6–8]. We  identified a significant
ignal of association (SNP 4) in this region through GWAS. Thus,
andidate gene association in a region expanding SNP 4–400 kb
rom both ends was performed to ascertain whether a true associa-
ion signal exists in bin 2.09. Eight candidate genes were predicted
n this region (Fig. 4). To investigate the causal polymorphisms
f these eight predicted genes within this 400 kb region, direct
CR amplification and sequencing of the 5′ and 3′ ends were
mployed. As a result, 1.6 Mb  of sequence from a panel of 144 maize
nbred lines was obtained, including 231 SNPs and 82 InDels. The
ssociation results of these candidate genes are shown in Fig. 4.
Please cite this article in press as: M.  Wang, et al., Genome-wide asso
Sci. (2012), http://dx.doi.org/10.1016/j.plantsci.2012.08.004

ine loci showed significant associations with head smut resis-
ance. These nine loci all belonged to the gene GRMZM2G166566,
hich is annotated as a basic-leucine zipper transcription

actor.
al dashed line show the regional genome significance. The triangle indicates the

4. Discussion 

In the present research, the level of LD decay was different 

among the ten chromosomes in maize, ranging from 0.5–1 Mb  in 

chromosome 10 to 100–200 kb in chromosome 1. This trend is in 

accordance with previous studies [38]. Our results also showed an 

average LD decay of approximately 200 kb. In addition, assessing 

whether prior knowledge of the power of GWAS increasing the like- 

lihood of meaningful data useful. The minimum number of markers 

required for a successful GWAS relies on the genome size and the 

rate of LD decay of the target germplasm. Using only 8590 loci in 

elite maize inbred lines, a gene associated with a trait concern- 

ing oleic content trait was  uncovered [39]. To some degree, the 

maize SNP50 Array, with 56,110 SNPs partially derived from 19,540 

genes, should be enough to scan GWAS for some special traits [16]. 

Genome wide trait-marker associations need to be selected using 

the optimum statistical method to eliminate false positive caused 

by complex patterns of the populations and relatedness in targeted 

populations [40]. Both GLM and MLM  methods were employed. 

Previous reports indicated that the mixed model is superior to the 

general model [41,42].  In our study, the associated loci decreased 
ciation study (GWAS) of resistance to head smut in maize, Plant

to 19 when the mixed model (Q + K) was employed. 291

In the present study, 19 association loci were found to be dis- 292

tributed over 10 chromosomes. The single SNP can explain 9% of 293

the phenotypic variation in maximum. A total number of 26 QTLs 294

dx.doi.org/10.1016/j.plantsci.2012.08.004
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ere identified from previous studies on maize head smut, but
our QTLs had r2 values greater than 10%. Several loci overlapped
ith previous studies [4–8]. Several studies have reported that a

egion in bin 2.09 harbors a QTL for head smut resistance, which
orresponds to the SNP 4 location. We  also identified a locus on
hromosome 3 (bin 3.05). Interestingly, a cluster of R genes in the
egion 3L was found, including the Rp3 [43], mv1 [44], wsm2 [45],
cmv2 [46] genes, together with a QTL associated with resistance
gainst Gibberella zeae infection [47] and to the European corn borer
48]. In addition, several associated loci exist on chromosome 8, one
f which is located in the genomic region coinciding with linkage
apping-based results [5].
In many plants, disease resistance involves numerous genes and

isplays complex inheritance. The present GWAS study revealed 18
andidate genes that could be classified into three groups according
o their predicted functions. The first group contains plant dis-
ase resistance R genes, such as GRMZM2G047152, which encode
he protein with NBS domain. Most known R genes encode NBS
roteins. In maize, an NBS-encoding gene, RP1-D,  plays a role in
esistance to rust (Puccinia sorghi)  [49]. The second group con-
ains genes for disease response. For example, GRMZM2G137289
ontains a MADS box involved in plant disease response [50].
RMZM2G44395 encodes a WD40 repeat domain associated with
isease response [51]. The third group contains genes encoding pro-
eins with domains homologous to other proteins that function in
lant disease resistance. In this study, candidate genes overlapped
ith those identified in two previous studies in functions [12,13].
ne of the 19 loci was selected to ascertain whether the true associ-
tion signal existed. Our results proved that this signal was  indeed
ssociated with resistance to head smut.

There were two limitations in the panel used for the genome-
ide association. First, the number of inbred lines was  small, which

ould weaken the power of the association and could result in some
oci being missed, especially those with small effects. It has been
eported that a panel of 155 could obtain 59.2% of the quantitative
enes related to 5% of the phenotypic variation [42]. Rare SNPs with
arge effects, untyped SNPs, and other structural variations (e.g.,

icrosatellites, variable number tandem repeats, retro-element
nsertion, deletions, and duplication), could not be identified. New
rends in combination association analysis with larger populations
nd bi-parental linkage mapping could help to resolve rare variant
ocations for traits [11,52].

In conclusion, the current study is the first to apply the Illu-
ina MaizeSNP50 to GWAS for head smut resistance. Eighteen

andidate genes were shown to be associated with the phenotypic
ariation of resistance to head smut disease. This research may
erve as a basis for resistant genes or QTL cloning to understand
urther the complicated molecular mechanism of maize resistance
gainst S. reiliana.  To validate the significant association signals,
urther research is required. Further studies may  focus on, deep
ssociation work (i.e., resequencing the rest of the gene from
he panel), QTL mapping/fine-mapping, characterization of near-
sogenic lines, gene knock-outs, complementation studies, larger
ample sizes, association analysis in more diverse populations, and
alidation of findings in other maize lines and environments to
dentify other genetic factors contributing to phenotypic variations.
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